Short-term climatic change in lake sediments from lake Alchichica, Oriental, Mexico

Margarita Caballero1, Gloria Vilaclara2, Alejandro Rodríguez3 and Diana Juárez3

1 Institute of Geophysics, UNAM, México, D. F., México
2 FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. de México.
3 Posgrado de Ciencias del Mar y Limnologia, UNAM, México, D. F., México

Received: September 3, 2000; accepted: July 15, 2001

ABSTRACT

Reduced precipitation in central Mexico is related to ENSO events. These short-term climatic fluctuations can modify mixing-stratification patterns of lake systems, reflected in the sediments deposited at the bottom year after year. Lake sediments can also record longer climatic trends. We present preliminary results of an evaluation of the potential of Lake Alchichica to record short-term fluctuations as well as middle-term climatic variability. Diatom, loss on ignition (LOI) and total pigment analyses were carried out on a 168 cm core from the NE shore of Alchichica. Two 14-C dates on bulk sediment give an approximate chronologic framework for the sequence. Total pigment content was a poor palaeoenvironmental proxy in this lake, as pigments were undetected below 56 cm, suggesting that concentration depends on degradation processes. Diatom preservation in the sediments was poor and restricted to the upper 44 cm. High pH and alkalinity in Alchichica favor diatom dissolution, limiting the potential of this lake for palaeolimnologic studies. Diatom assemblages in the upper 44 cm of the sequence suggest that the lake has remained an alkaline-subsaline system during the recent past, probably over the past 300 yr., with a very recent decrease of lake level. There is no record of short-term climatic events such as ENSO. Sediment stratigraphy and LOI data, however, suggest a past event of unknown age (>300 yr ?), with lower than present lake levels and higher alkalinity.

KEY WORDS: Maar lakes, diatoms, Oriental Basin.
violation of the hurricane paths away from the continent (Douglas, 1983). It has been well documented that short-term climatic fluctuations of this sort can modify lake systems, particularly their mixing-stratification patterns (Alcocer and Lugo, this volume; Alcocer et al., 2000; Margalef, 1983; Hutchinson, 1957). Such changes in the water column can be reflected in the sediments that are deposited at the bottom year after year. There are several lake basins in central Mexico that could potentially keep a good record of such short-term climatic events as well as of longer climatic change trends (Caballero et al., 1999; Caballero and Ortega 1998; Byrne et al., 1996; Lozano et al., 1993). In particular, there is some evidence that suggests that lakes in Cuenca de Oriental can be sensitive to short-term climatic fluctuations through changes in mixing-stratification patterns. These changes can be related to occasional blooms of cyanobacteria (called lake “sickness” by the local people in Atexcac), or, like in Alchichica, with modifications of the normal annual blooming pattern (Alcocer and Lugo, this volume; Macek et al., 2000, 1994; Alcocer et al., 2000; Lugo et al., 2000 & 1999; Vilaclara et al., 1993). We present preliminary results of a project that aims to study short- and mid-term climatic trends from the sedimentary record of lake Alchichica in Cuenca de Oriental, eastern Mexico.

RESEARCH AREA

Oriental is a closed hydrological basin located in the eastern part of the Trans-Mexican Volcanic Belt (Figure 1). It is bounded by high volcanic structures such as the Sierra Madre Oriental and the Pico de Orizaba, and it has a Cretaceous limestone basement that outcrops within the basin (Reyes, 1979). The central lower lands (2300 m a.s.l.) have two ephemeral lake areas (El Salado or Tepeyahualco and El Carmen or Totolcingo), that nowadays remain dry for most of the year. Oriental also has eleven maars (Casique et al., 1982; Gasca, 1981; Reyes, 1979), six of them containing a water body (locally referred as “xalapazcos”), and the remaining five dry (locally referred as “xalapazcos”). The maar lakes are divided in two geographic groups: i) Quechulac, Alchichica, La Preciosa and Atexcac to the north, with a transition between semiarid and temperate climate (BS to Cw); ii) Aljojuca and Tecuitlapa to the south, with a dominantly sub-humid climate (Cw) (CONABIO-estadigrafía, 1997 a y b; García, 1988). The characteristics of these lakes vary (Table 1), but all of them are alkaline and have relatively high electric conductivity (Kc>0.75 mS/cm). Ephemeral lakes are sustained by rainfall, whereas maar lakes are sustained by underground water (Gasca, 1981; Álvarez, 1950). Recharge of the underground water system is provided by rainfall over the nearby hills that capture the moisture of the Trade winds which have crossed over the Gulf of Mexico (Vilaclara et al., 1993; Ramírez-García and Novelo, 1984).

Alchichica is the biggest of the maar lakes (in area and volume) of Cuenca de Oriental and is characterized by alkaline (pH>9), subsaline (8.5 g/l) water. Two main factors are responsible for this chemistry: 1) Incoming waters are rich in sodium from volcanic materials, and in bicarbonates from the Cretaceous limestone; these lakes are known as “sodic lakes” (Margalef, 1983) and are characterized by high alkalinity, high contents of carbonates and sodium, and very low calcium concentration. 2) Due to the sub-arid climate, evaporation is higher than precipitation, and mineral solutes concentrate. Maximum lake depth is 64 m; lake level, however, has been decreasing during the last decades, exposing littoral calcareous stromatolites that are characteristic of this lake (Tavera and Komárek, 1996). It behaves as a warm monomictic lake, oligomesotrophic with a tendency to mesotrophy, with two blooms of primary producers: a diatom bloom during the winter mixing (December-January) and a cyanobacteria bloom at the onset of the stratification period (April-May). The latter bloom appeared to be weakened during the El Niño-La Niña 1997-1998 event (Alcocer et al., 2000; Alcocer and Lugo, this volume; Vilaclara et al., 1993).

The ephemeral lakes, the xalapazcos and the shallow xalapazcos (Tecuitlapa) present in Cuenca de Oriental are considered to be late phases in the evolution of former, deeper systems (Álvarez, 1950). Nevertheless, very few paleolimnological or paleoenvironmental works have been carried out in this area to confirm this hypothesis or to give information into the evolution of the lakes and the climate of the area. During the 70’s, Heine did some geomorphological work on nearby Malinche volcano (Heine, 1988) in relation with glacier advances, establishing three glacial advances within the last ca. 10 000 yr.: MIII by ca. 9000, MIV by ca. 2000 and MV younger than 1000. This sequence, however, has been disputed by White (White et al., 1990; White 1986 y 1962; White and Valastro, 1984) who based their studies on the Iztaccíhuatl and Ajusco volcanoes. Straka and Ohngemach (1989) and Ohngemach and Straka (1983) did some palinological work on two main locations within Cuenca de Oriental: El Carmen (not dated) and the dry maar of Xalapazquillo. The scope of these works was limited by a poor chronology and by overrepresentation of Pinus pollen. Data suggest that during the last ca. 35 000 yr. an important change in the vegetation occurred by ca. 8000 yr. BP, presumably correlating with the Pleistocene/Holocene transition (Straka and Ohngemach, 1989). No paleolimnological information was derived from these studies.

MATERIALS AND METHODS

Short-term climatic events in the area of study can be reflected as modifications on the phytoplankton composition and on its normal pattern of annual blooms. It is our
Fig. 1. Location map: a) Trans-Mexican Volcanic Belt, b) Cuenca de Oriental c) Lake Alchichica (taken from Vilaclara et al., 1993, modified from Arredondo et al., 1983) with location of coring site.
hypothesis that by measuring the content of pigments preserved in the sediments and contrasting this with the diatom record it might be possible to detect such short-term climatic events. Diatoms, together with loss on ignition, are well-established tools in the study of longer-term limnological and climatic trends (e.g. Bradbury, 1991; Caballero and Ortega, 1998).

Field Work.- Three littoral cores (Alchi-I: 60, Alchi-II: 70 and Alchi-III: 168 cm) were taken from lake Alchichica to evaluate the potential of its sediments as records of limnological and climatic conditions. Cores were taken with an Eijelkamp soil sampler, which consists of a stainless steel casing with an inner plastic tube where the sample is collected. The casing and plastic sampling tube are introduced in the sediment by manual pressure or using a motor hammer and recovered by a lever system. The three cores were taken from the NE shores, in a pool formed just behind some stromatolites. According to field data, this littoral area was permanently covered by water before 1979, thus registering older changes in the entire lake. Such zones are the best choice for paleolimnological studies in Alchichica because the bottom of the lake was disturbed by strong explosions in 1974, detonated as part of seismological survey across Central Mexico (J. Urrutia, pers. com.).

Sampling.- All cores were sampled by extracting one-centimeter slices every five centimeters, preserved by cooling until analyzed.

Dating.- Two 14-C dates (AMS) on bulk sediment are available for the Alchi-III core, reported ages are conventional radicarbon dates in years before present (yr. BP). Bulk sediment dates in this area can nonetheless have a systematic error due to the input to the lake of old carbon from the calcareous Cretaceous basement. The presence of old carbon in the system dilutes the amount of radiocarbon, giving older ages than the true age of the sediment; the magnitude of this effect in the area has not been quantified. Determinations were made in the AMS Radiocarbon Research Laboratory of the University of Colorado, as part of a collaborative program for palaeoenvironmental research between USA and Latin America.

Loss on Ignition (LOI).- LOI was determined by burning a known weight of dry sediment at 550°C for two hours and at 950°C for another two hours. Weight differences are expressed as a percentage of the initial dry weight. The loss at 550°C is proportional to the organic matter content in the sample, the loss at 950°C correlates with carbonate content.

<table>
<thead>
<tr>
<th>MAAR LAKES</th>
<th>Position</th>
<th>Altitud. m a.s.l.</th>
<th>ZM m</th>
<th>Climate</th>
<th>Precip. mm/yr</th>
<th>K25 mS/cm</th>
<th>pH</th>
<th>Ionic dominance meq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALJOJUCA</td>
<td>19°05'N 97°32'W</td>
<td>2340</td>
<td>45</td>
<td><600</td>
<td>1.22</td>
<td>8.4</td>
<td>HCO₃⁻>CO₃⁻=>Cl⁻>SO₄²⁻= Na⁺>Mg²⁺>Ca²⁺>K⁺</td>
<td></td>
</tr>
<tr>
<td>TECUITLAPA</td>
<td>19°08'N 97°33'W</td>
<td>2380</td>
<td>4.5</td>
<td>600</td>
<td>1.65</td>
<td>8.5</td>
<td>HCO₃⁻>CO₃⁻=>Cl⁻>SO₄²⁻= Na⁺>Mg²⁺>Ca²⁺>K⁺</td>
<td></td>
</tr>
<tr>
<td>ATEXCAC</td>
<td>19°20'N 97°27'W</td>
<td>2340</td>
<td>35</td>
<td>C(w"')(w)(i')g</td>
<td>500</td>
<td>11.0</td>
<td>Cl⁻>CO₃⁻>HCO₃⁻>SO₄²⁻= Na⁺>Mg²⁺>K⁺>Ca²⁺</td>
<td></td>
</tr>
<tr>
<td>QUECHULAC</td>
<td>19°22'N 97°21'W</td>
<td>2350</td>
<td>35</td>
<td>temperate</td>
<td><500</td>
<td>0.75</td>
<td>HCO₃⁻>Cl⁻>CO₃⁻>SO₄²⁻= Mg²⁺>Na⁺>Ca²⁺>K⁺</td>
<td></td>
</tr>
<tr>
<td>LA PRECIOSA</td>
<td>19°22'N 97°23'W</td>
<td>2330</td>
<td>45</td>
<td><500</td>
<td>2.15</td>
<td>8.7</td>
<td>Cl⁻>HCO₃⁻>CO₃⁻>SO₄²⁻= Mg²⁺>Na⁺>Ca²⁺>K⁺</td>
<td></td>
</tr>
<tr>
<td>ALCHICHICA</td>
<td>19°25'N 97°24'W</td>
<td>2320</td>
<td>64</td>
<td>Bskw"'(w)(i') subarid</td>
<td><400</td>
<td>13.0</td>
<td>Cl⁻>CO₃⁻>SO₄²⁻>HCO₃⁻; Na⁺>Mg²⁺>K⁺>Ca²⁺</td>
<td></td>
</tr>
</tbody>
</table>
Pigments.- Total pigments were determined by the Bengtsson and Enell (1986) method, which consists of an extraction with acetone at low temperature in the absence of light. Pigment content was measured by spectrometry and expressed as spectrometric units per gram of organic matter (or Pigment Units, P.U.).

Diatoms.- Samples were cleaned with HCl (10%) and concentrated H₂O₂. The remaining sediment was neutralized by successive rinsing and taken to a constant volume (30 ml). Microscope slides were made by mounting 200 ml of cleaned material with Naphrax. A minimum of 400 valves was counted using an Olympus BH-2 microscope. Data are expressed as relative (% of total count) and total (valves/gram of dry sediment) abundance.

RESULTS AND DISCUSSION

The Alchi-III core is considered to be the most representative and its sediments were used to test the total pigment extraction methodology and to perform LOI and diatom analyses (Figure 2). Although the literature states the usefulness of pigment determination in sediments for paleoenvironmental studies (Leavitt, 1993, Leavitt et al., 1997), the results suggest that the bulk concentration of pigments in the sediments of Alchichica is determined mainly by degradation processes: High levels are present in the near surface sediments (from 2,375 P.U. at 6 cm to 150 P.U. at 56 cm) and levels below the detection limits occur at greater depths. Sediment stratigraphy, LOI and diatom data nonetheless suggest that the Alchichica record can be divided into four stages:

i) The base of the sequence (165 – 125 cm) is formed mainly by precipitated carbonates (CaCO₃ ca. 50%). There is no further data for palaeolimnological reconstruction during this phase, but given the nature of this lake and the location of the core, it might be part of an old stromatolite-like structure.

ii) The interval between 125 and 49 cm is dominated by silt deposition with variable content of calcareous concretions (ca. 5-30% of carbonate) that are bigger (gravel size) and more abundant at the base of the section and show a general decreasing trend towards the top (Figure 2). No

Fig. 2. Sediment sequence, Loss on Ignition (LOI), diatom and pigment stratigraphy from core ALCHI-III, recovered from the northeastern shores of Lake Alchichica, Cuenca de Oriental, Central Mexico.
diatoms are preserved, so paleolimnological interpretation is limited. It is considered that this phase represents a lacustrine episode similar to present.

iii) The interval between 49 and 44 cm is a carbonate-rich horizon with abundant coarse sand to gravel size calcareous concretions (ca. 50% of carbonate). It is possible that this interval corresponds with a period of higher water alkalinity associated with higher evaporation and lower lake level. The presence of roots at the top of the unit supports the interpretation of a lower lake level phase.

iv) A final period (44 – 0 cm) is dominated by silt deposition, with low carbonate content (ca. 10%) present as fine sand carbonate concretions. This last episode is the only one with diatom preservation (Figure 2), even though valves are badly corroded which gives evidence of diatom dissolution, well documented in high pH, carbonate rich environments such as Alchichica (Straub, 1993, Flower, 1993). This process explains the absence of diatoms in deeper sediments. Diatom assemblage is dominated by *Nitzschia aff. fonticola*, with *Achnanthes delicatula*, *Navicella pusilla*, *Navicula cryptotenella* and *Rhopalodia opperculata*. All these species are characteristic of alkaline, saline conditions similar to present ones, so this phase is interpreted as a lacustrine episode with lower alkalinity and higher water level than the previous interval. The last sample, however, has a slightly different assemblage, with lower abundance of *N. aff. fonticola* and *A. delicatula*, but higher numbers of *N. cryptotenella*, *N. pusilla* and *R. opperculata*; this change in diatoms is associated with the presence of abundant roots in the sediment. This change in diatom assemblage is not easy to explain, as all species have a similar ecology. The increase in *R. opperculata*, a species with a typical bentonic habitat and the abundance of roots in the sediment, suggest that it is related with a lower water level trend, documented by recent photographs taken during fieldwork in 1979, which clearly show a higher than present lake level that fully covered the stromatolites exposed today (Tavera and Komárek, 1996).

Two AMS 14-C dates are available for the Alchi-III sequence: NSRL-10406, 1720+/-30 (50-53 cm) and NSRL-10407, 2320+/-40 (83-88 cm). The true age of the sediments, however, is difficult to estimate as dates might have a systematic error induced by the old carbon entering the system from the Cretaceous calcareous rocks that outcrop in the area (Reyes 1979). In an effort to estimate the true age of the sediments, and assuming that the entrance of old carbon to the system is more or less uniform, the average sedimentation rate between 83 and 53 cm (the two dated horizons) is calculated as ca. 0.6 mm/yr. This sedimentation rate is consistent with that expected in an oligotrophic lake such as Alchichica (0.3-1mm/yr., Bradbury, 1991; Longmore, 1986; Saarnisto, 1986). Taking into account this rate of sedimentation, we can estimate that the sediments from stage ii (125 – 49 cm) were deposited in a lapse of ca. 600 yr., and maybe the sediments from stage i (of similar nature to those between 83 and 53 cm) were deposited in a lapse of ca. 300 yr. With this approximate time frame in mind, we can suggest that the shallow water stage (stage ii) ended ca. 300 yr. ago. The sedimentation rate of this horizon must have been nonetheless different from that of stages ii and i, whereby the duration of this phase cannot be calculated with the available data.

CONCLUSIONS

1. The total pigment content of littoral sediments is not a good palaeoenvironmental proxy in lake Alchichica because its concentration is affected by degradation processes.

2. The high pH and alkalinity of Alchichica favors diatom dissolution in the sediments, limiting the potential of this lake as a palaeoenvironmental and palaeolimnological research site.

3. The diatoms preserved in the upper 44 cm of the sequence indicate that the lake has remained as an alkaline subsaline, high pH system during the recent past (probably the last ca. 300 yr.).

4. A recent trend to lower lake level is observed in the last 5 cm of the sediment sequence; this trend is further documented by recent photographic evidence and by the exposition to air of the stromatolites. The lake, however, has not significantly changed its nature and, at least in the studied cores, shows no evidence of shorter-term climatic events such as ENSO.

5. In a longer time scale, a possible interval of lower-than-present lake level and higher alkalinity is detected as a carbonate rich horizon (49 to 44 cm). The age and duration of this event is unknown, but it might be older than ca. 300 years. This dry episode was preceded by a lacustrine phase (similar to present) that might have spanned for ca. 600 yr.

ACKNOWLEDGEMENTS

To CONACyT for financial support though project 075Pñ-1297. To Rodolfo Robledo, Teodoro Hernández, Susana Sosa, Ana Ma. Soler, Cecilia Caballero and Martha Gaytan for field work and technical assistance. To the Na-
Climatic change in sediments from lake Alchichica

BIBLIOGRAPHY

CONABIO-ESTADIGRAFÍA, 1997a. Carta de Climas de México, 1:1,000,000. CONABIO, México.

CONABIO-ESTADIGRAFÍA, 1997b. Carta de Precipitación Total anual de México, 1:1,000,000. CONABIO, México.

Margarita Caballero¹, Gloria Vilaclara², Alejandro Rodríguez³ and Diana Juárez³

¹ Institute of Geophysics, UNAM, Ciudad Universitaria, Coyoacán, 04510 México, D. F., México.
² FES-Iztacala, UNAM, Los Reyes Iztacala, 54090 Tlalnepantla, Edo. de México.
³ Posgrado de Ciencias del Mar y Limnología, UNAM, 04510 Ciudad Universitaria, México, D. F., México.