Observations of atmospheric gravity waves using airglow all-sky CCD imager at Cachoeira Paulista, Brazil (23° S, 45° W)

A. F. Medeiros¹, H. Takahashi², P. P. Batista², D. Gobbi² and M. J. Taylor³

¹ Universidade Federal Campina Grande (UFCG), Bodocongó, Campina Grande, Paraíba, Brasil
² Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brasil
³ Space Dynamics Laboratory and Physics Department, Utah State University, Utah, USA

Received: March 31, 2002; accepted: July 29, 2002

RESUMEN

Un fotómetro imageador CCD all-sky fue operado en Cachoeira Paulista (CP), Brasil (23° S, 45° O), con la colaboración de la Utah State University – EUA, durante 12 meses para la observación de las emisiones de aeroluminiscencia en OH, O₂ y OI (557.7 nm). De estas observaciones fueron retiradas las componentes dominantes de las ondas de gravedad e investigadas sus variaciones con las estaciones del año. Estas ondas tienen típicamente longitud de onda horizontal corta (5 – 60 km), período corto (5 – 35 minutos) y velocidad de fase horizontal entre 1 y 80 m/s. Las ondas del tipo banda (longitud de onda horizontal entre 10 y 60 km), muestran una clara dependencia en su dirección de propagación horizontal, moviéndose para el sudeste en el verano y para el noroeste en el invierno. La dirección de propagación cambia a mediados del mes de marzo y al final de septiembre. Nuestros resultados sugieren que las ondas de gravedad en CP son generadas por una fuerte convección troposférica. En el verano esta región se extiende en una línea entre los 10° S, 45° O y 40° S, 78° O cubriendo desde la parte septentrional de la Argentina al nordeste de Brasil, teniendo una acentuada distribución en la parte central brasileña y siendo que CP está abajo de esta región. En el invierno y en contraste con el verano, la región convectiva se localiza abajo de CP principalmente sobre el mar, sin esta convección en la región central del Brasil, arriba de CP. La conclusión más importante es que la anisotropía en la dirección de propagación de las ondas se debe principalmente a la localización de la fuente y su filtraje por los vientos estratosféricos.

PALABRAS CLAVE: Ondas de gravedad, resplandor atmosférico, imageador, diagrama de bloques, vientos.

ABSTRACT

An all-sky CCD imager for OH, O₂ and OI (557.7 nm) airglow was operated at Cachoeira Paulista (CP), Brazil, (23° S, 45° W), from October 1998 to September 1999, with Utah State University. Dominant gravity wave components are extracted and seasonal variations are investigated. These waves have typically short horizontal wavelengths (5 – 60 km), short periods (5 – 35 minutes), and horizontal phase speeds of 1 – 80 m/s. Band-type waves of horizontal wavelength between 10 and 60 km showed clear seasonal dependence in the horizontal propagation direction to southeast in summer and to northwest in winter. The direction of propagation changed in mid-March and at the end of September. The gravity waves over CP may be generated by the strong tropospheric convection. In summer, this region extends along a line approximately between (10° S, 45° W) and (40° S, 78° W), from northern Argentina to the Brazilian northeast, with an accentuated distribution over central Brazil. CP is below this region. In winter, the convective region is located below CP mainly over the sea and there is no convection in central Brazil region above CP. Thus the anisotropy of the wave propagation direction is mainly due to source location and wave filtering by stratospheric winds.

KEY WORDS: gravity waves, airglow, imager, blocking diagram, winds.

1. INTRODUCTION

Over the past few decades much research has been done to understand the role of atmospheric small scale dynamics, such as internal buoyancy waves, in the global circulation system of the atmosphere. An internal buoyancy wave, or gravity wave, is the result of a perturbation of the stable atmosphere in which gravity and buoyancy act as restoring forces. The impact caused by gravity waves is a significant deviation of the general circulation from radiative equilibrium.

Since internal atmospheric gravity waves were recognized as an important atmospheric phenomenon (Hines, 1960), considerable observational and theoretical research has been carried out. These efforts have established the importance of such motions as a part of the driving force of the mean circulation and thermal structure of the Mesosphere and Lower Thermosphere (MLT) region via wave energy and momentum transports (Fritts, 1993).

Considerable progress has been made in observational techniques of gravity waves in the MLT. Some of these techniques are MF radar (Vincent and Fritts, 1987; Manson et al., 1997; Thayaparan, 1997; Fritts et al., 1998); incoherent scattering radar (Burnside et al., 1991; Rishbeth and Vaneyken, 1993; Kirchengast et al., 1996; Oliver et al., 1997); MST radar (Riggin et al., 1995); MU radar (Takahashi et
patterns of restricted spatial extent (Peterson, 1979), and are likely generating sources of the waves. The result was that the data using the filtering wave theory and searched for served features. For explaining these features, we discuss not less important, was to understand the causes of the ob-
Atmospheric gravity waves at Cachoeira Paulista (23°S, 45°W)

1999. This result is depicted in the Figure 1 which plots the frequency of occurrence of the waves. Despite the sometimes severe restrictions imposed by meteorological clouds, approximately 433 hours of useful data were recorded on 69 nights, in which 283 wave events were detected. The mean rate of the events was 0.7 events/hour, with higher mean rate on summer and winter months and lower mean rate on equinoctial months.

The Figures 2 show examples of the gravity waves imaged during the observation period. In the Figure 2 two images showing gravity waves recorded in the OI(557.7 nm) and near-infrared OH emissions with bands (left) and ripples(right).

3.1 Band-Ripple comparison

Of the total 283 wave events, 64% were bands, while 36% were ripples.

The data have been binned into histograms of 5 km width. This shows the most frequently observed horizontal scale sizes. The strong tendency for ripples to occur over narrow wavelength range is apparent with ~83% of all events having wavelengths in the 10-15 km range. In contrary, the band distribution exhibited a significantly broader range of horizontal wavelengths extending from ~10-60 km and 85% of all bands had wavelengths > 15 km. The average band wavelength was 22.92 km, approximately twice of that for the ripples (12.94 km).

The distribution of observed waves periods have binned at 2 min intervals. The ripples exhibit a remarkable sharp distribution centered on the 6-10 min (with 70% of events occurring within this range) and an average wave period of 8.36 min. In comparison, the distribution of the periods of the bands is considerably broader than for the ripples and shows a clear tendency toward longer wave period (with 97% of bands exhibiting periods > 8 min). The bands exhibited an average wave period of 15.62 min.

The distribution of wave phase speeds have plotted at 10 m/s intervals. The bands measurements range from 10 to 80 m/s and exhibit an average value of 26.1 m/s. There is a clear tendency for many of the waves to exhibit phase speed in the 10-40 m/s range. The ripples exhibited a distribution in the range of the 10-60 m/s. The average phase speed was of 27.2 m/s.

The last parameter analyzed was the wave propagation direction. The propagation direction for both groups, binned over 15° intervals, are plotted in Figure 3. The distribution of bands (Figure 3a) is highly anisotropic. There are two directions of preference: southeast (azimuth range 90°-180°) and northwest (azimuth range 270°-360°). The ripples (Figure 3b) presented propagation direction in all azimuths and did not show a preferential direction.

3.2 Band-Ripple seasonal variation

After the general comparison of the bands and ripples, we analyzed the parameters (wavelength, period, phase velocity and propagation direction) distributed for each group by each season. The total observation period was separated in four seasons: summer (November, December, January and February), autumn (March and April), winter (May, June, July and August) and spring (September and October).

This analysis did not show a clear seasonal variation for wavelengths, periods and phase velocities, neither for ripples or bands. The ripples also did not present seasonal variation for propagation direction. However, the bands showed an evident seasonal variation for propagation direction. The Figure 4 shows a clear preference of the bands for
Fig. 3. Polar histogram of the propagation direction for bands (a) and ripples (b) binned over 15° intervals.

Fig. 4. Polar histograms of the propagation direction for bands for each season. Summer (a), Autumn (b), winter (c) and spring (d).
propagation direction in summer and winter. In summer the preferential propagation direction is towards southeast (Figure 4a). In winter the preferential propagation direction is towards northwest (Figure 4c). In the other seasons no clear preferential propagation direction were observed.

4. DISCUSSION

4.1 Preferential direction and filtering

The anisotropy detected in propagation direction of the bands, mainly for summer and winter can be due the presence of critic levels. Gravity waves propagating upward from the lower atmosphere are absorbed into the mean flow as they approach a critical layer where the intrinsic frequency of the wave is Doppler shifted to zero. This situation may occur at any height level when the local horizontal wind speed along the direction of propagation equals the observed horizontal phase speed of the gravity wave.

The Equation 1 was used to determine the forbidden regions (velocities) defined by the regions where the wave frequency $\Omega \leq 0$ at any height below the peak of the layer emissions (OI5577, OH and O2):

$$v_z = V_z \cos \phi + V_m \sin \phi,$$

where V_z is the zonal wind, V_m is the meridional wind and ϕ is the angle between wave vector and east.

Blocking diagrams (Ryan, 1991; Ryan and Tuan, 1991; Taylor, 1993) were plotted for each month of the year using the wind profiles derived from HWM93 (Hedin, 1996) for CP. The Figures 5, 6 and 7 show blocking diagrams superimposed with the bands observed for each season of the year and each emission. The results agree in part with the anisotropy detected in the bands. This suggests that the wave filtering by winds can play an important role in the seasonal variation of the waves over CP but it is not the only factor.

4.2 Likely sources

Any perturbation with temporal scales between a few and several minutes that introduces changes in the atmosphere

![Diagram](image.png)

Fig. 5. Blocking diagrams superimposed with the bands observed from each season of the year for bands detected in OH layer.
may generate gravity waves. Nowadays the tropospheric sources are thought as possible generators of the waves in all latitudes (Taylor, 1988).

In this work we used airglow image data together with satellite image (GOES8) data and Lightning imaging sensor (LIS) data to identify the sources. The LIS is a space based instrument used to detect the distribution and variability of total lightning (cloud-to-cloud, intracloud, and cloud-to-ground lightning) that occurs in the tropical regions of the globe. The LIS is a scientific instrument aboard the TRMM (Tropical Rainfall Measuring Mission) observatory.

The satellite images were used to detect convective regions over South America (area with approximately 1000 km of radius with center in CP).

The LIS data were used for identification of the thunderstorms and to infer seasonal distribution of the lighting over South America. These data also permitted to discuss the anisotropy of the direction of propagation.

Figure 8 shows the lightning distribution in the tropics for summer. Note clearly that most of the lightning occurrence over South America extends approximately in the line from northern Argentina to almost the Brazilian northeast with a conspicuous distribution over central Brazil. CP is located bellow this line, this suggests this convection line as responsible for most of waves over CP directed to southeast in summer.

Figure 9 shows the lightning distribution over the tropics for winter detected by LIS. In contrast with summer the lightning distribution occur bellow CP, mainly over the sea and there is no convection above in central region of the Brazil. This suggests that is this region that contribute for that waves to have propagation direction for northwest in winter.

The analysis of the Figures 8 and 9 and its comparison with the Figures 5, 6 and 7 suggests that gravity waves over CP are generated by strong convection regions (above CP in summer and bellow of CP in winter). This way, the anisotropy of propagation direction is due in part to the location

Fig. 6. Blocking diagrams superimposed with the bands observed for each season of the year for bands detected in O$_2$ layer.
35

Atmospheric gravity waves at Cachoeira Paulista (23°S, 45°W) of the generating sources and mainly to wave filtering by stratospheric winds.

5. CONCLUSIONS

The present work showed relevant result of the gravity wave observations by the airglow imaging technique carried out at CP (23° S, 45° W) in the period of October 1998 to September 1999. A total of the 69 nights, corresponding to 433 hours of the observations, was analyzed. During the period, 283 wave events were detected in OH, O₂ and OI5577 images. The main results are listed below:

1. Most of wave activity occurred in months of January and February. The events mean rate was 0.7 events/hours, with larger rates in summer and winter months and smaller rates in equinocial months.
2. Of a total of 283 wave events 64% were classified as bands and 36% as ripples.
3. 83% of the ripples presented wavelength between 10 and 15 km.
4. 85% of the bands presented wavelength larger than 15 km.
5. The mean wavelength for the bands was 22.9 km and for ripples was 12.9 km.
6. 70% of the ripples presented observed periods between 6 and 10 minutes.
7. 97% of the bands displayed observed periods greater than 8 minutes.
8. The ripples displayed an observed mean period of 8.4 minutes, while the bands presented an observed mean period of 15.62 minutes. This corresponds to almost twice the mean period of the ripples.
9. The bands and ripples displayed a similar tendency (between 10 and 40 m/s) for phase velocity.
10. The mean phase velocity for bands was of 26.08 m/s and for ripples was of 27.17 m/s.
11. The wavelengths for the bands have broader distribution (10-60 m/s) in summer and winter.
12. The ripples did not display clear seasonal variation for wavelengths.
13. The bands displayed the same distribution for the observed periods for the four seasons. However, 80% the
bands in winter presented observed period between 10 and 20 minutes.
14. The ripples displayed the same distribution for the observed periods for the four seasons.
15. The observed phase velocity of the bands in winter and summer were of same order, between 10 and 40 m/s.
16. The ripples did not display a clear seasonal variation for observed phase velocity.
17. The ripples did not display clear seasonal variation for propagation direction.
18. The bands displayed an anisotropy in propagation direction. In summer, most of waves propagated for south-
Atmospheric gravity waves at Cachoeira Paulista (23°S, 45°W)

east. In winter, the propagation direction was for northwest.

19. The gravity waves over CP are generated by strong convective regions. In summer, these regions extend over a line from approximately (10° S, 45° W) to (40° S, 78° W), covering from north of Argentina to Brazilian northeast, with an accentuated distribution over central Brazil having CP below this region. In winter, the convective region in contrast to the summer is below CP, mainly over the sea and there is no convection in central Brazil region above CP.

20. Finally, maybe the most important conclusion of the work was that the anisotropy of propagation direction is due to partially the location of the generating sources (seasonal variation) and mainly to the wave filtering by stratospheric winds.

BIBLIOGRAPHY

A. F. Medeiros¹, H. Takahashi², P. P. Batista², D. Gobbi² and M. J. Taylor³

² Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas 1758, C. Postal: 515, São José dos Campos, São Paulo, 12.201-970, Brasil.
³ Space Dynamics Laboratory and Physics Department, Utah State University, Logan 84322-4145, Utah, USA Email: afragoso@df.ufpb.br